
Theory 
2.1 Measurement of thermal resistance using a DC bridge

A DC balanced bridge (the so-called Wheatstone bridg
unknown electrical resistance by balancing the two legs of a
containing the unknown component.
Figure 1. 

Figure 1 Circuit schematic of a DC bridge

In Figure 1, Rt is the unknown resistor to be measured;
resistance. Adjustable resistor R
current flows through the millivolt meter (mV). Under such case, the
midpoints (B and D) is zero. Hence, the resistance ratio in the known leg
in the unknown leg (Rt/R3) as, 

If R2 = R1, we have Rt = R3. 

2.2 Measurement of thermal resistance using a constant current 

Figure 2 is the circuit schematic of measuring thermal resistance using a constant current. 

Figure 2 Circuit schematic of measuring thermal resistance using a constant current

In Figure 2, the power supply is a constant current source 
value; Rt is a thermal resistor; UR1

used to monitor the current of the circuit from which the resistance of 
voltage URt on the thermal resistor. 
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2.3 Temperature sensor Pt100 of platinum resistor

Pt100 platinum resistor is a temperature sensor that utilizes the resistance variation of platinum 
metal with temperature. Platinum possesses stable physical and chemical characteristics, strong 
antioxidant ability, good replication, and easy production. H
used for precise measurement of temperature in industry. However, the disadvantages are their 
high cost, small temperature coefficient, and vulnerability to magnetic field perturbation. 

According to IEC standards, the r
is -200 - 650 °C. Pt100 platinum resistance sensor has a resistance of 100 ohms at 0 °C (i.e. 32 
°F). The relationship between resistance 
sensor (Appendix 1), and can be expressed as follows:

and 

In (3) and (4), Rt and R0 are respectively the resistance at temperature 
B and C are temperature coefficients. For commonly used industrial platinum resistances, we 
have A=3.90802×10-3/°C, B=-5.80195
Rt can be approximately expressed in linear as:

where A1 is the temperature coefficient and approximately 3.85×10
°C and Rt =138.5 ohm at t = 100 °C.

2.4  Temperature sensor of semiconductor thermistor (NTC1K)

A semiconductor thermistor measures temperature by using the characteristi
variation with temperature change. According to the resistance increasing or reducing with the 
increase of temperature, semiconductor thermistors are classified into NTC type (negative 
temperature coefficient), PTC type (positive temperatu
temperature). Semiconductor thermistors have properties of large resistivity and large 
temperature coefficient, but also drawbacks of large nonlinearity and poor stability. Therefore 
they are usually only applicable t
measurement unnecessary. Characteristic curves of the above three types of thermistors are 
shown in Figure 3. 
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Figure 3 Characteristic curves of three types of thermistors

In a certain temperature range (less than 450 °C), the resistance 
relationship with temperature T as follows:

where Rt and R0 are respectively the resistance values at temperature 
thermodynamic temperature unit Kelvin. For a certain thermistor, 
2000 ~ 6000 K.  
 
Take a logarithm operation on both sides of the above formula, we get: 

From (7), we know lnRT and 1/T
doing a straight line fitting, the slope of the line, i.e. constant 

2.5  Temperature sensor of voltage

The temperature sensor LM35 is packed following industrial standard T
usually ± 0.5 °C. Since its output is a voltage signal of good linearity, it is easy to build a 
precision digital temperature measurement system as long as a DC voltage source and a digital 
voltmeter are supplied. Internal laser calibration ensur
external calibration. The temperature coefficient of output voltage is K
shows the schematic of LM35. By measuring its output voltage 
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t (℃) = V
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Figure 4 Schematic of temperature sensor LM35.
 

2.6  Temperature sensor of current

AD590 is a current-mode integrated circuit temperature sensor. Its output current is proportional 
to the temperature with a very good linearity. AD590 temperature sensor has a temperature 
measurement range of -55 - 150 °C and sensitivity of 1 
accuracy, large dynamic resistance, fast response speed, good linearity and easy to use. AD590 is 
a two ends device, its circuit symbol is shown in Figure 5. 

Figure 5 Circuit symbol of AD590
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Figure 6 Current-temperature (I-T) characteristic curve of AD590 

 
Its output current expression is: 

I = AT+B,                                     (11) 
where A is sensitivity and  B is the output current at 0 K.  
 
If using Celsius temperature t °C, it can be transferred using following formula:  

T = t-273.15.        (12) 

In a simple application, taking the benefit of the above mentioned characteristics of AD590, 
temperature measurement can be fulfilled by using a power supply, a resistor, and a digital 
voltmeter. The schematic circuit for experimental measurement is shown in Figure 7. 

 

Figure 7 Circuit schematic of AD590 for experimental measurement 

2.7  Temperature sensor of PN junction 

A PN-junction temperature sensor measures temperature utilizing the characteristics of 
temperature dependency of the junction voltage of a PN junction.  Experiments have proven that 
under a certain current flowing through, there is a good linear relationship between the forward 
voltage of the PN junction and the temperature. Usually, by making short circuit between 
terminals b and c of a transistor, the PN junction between terminals b and e is used as a 
temperature sensor for temperature measurement. The forward voltage Vbe between terminals b 
and e of a silicon transistor is typically approximate 600 mV ( at 25 °C), and is inversely 
proportional to the temperature with good linearity of temperature coefficient about -2.3 mV/°C. 



Normally, the relationship between current 
following expression: 
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In (13) and (14), q = 1.602×10
Boltzmann constant, T is thermodynamic temperature, and 

Under the condition of applying a constant forward current, the relationship between
voltage U and temperature t is approximately linear as follow:

 where Ugo is the semiconductor material parameter and 
coefficient of the PN junction. A schematic of experimental measur
PN junction is shown in Figure 8.

Figure 8 Schematic of experimental measurement of temperature using PN junction 
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