2. Theory

For one mole of an ideal gas, the relation between the specific heat in constant pressure C_p and the specific heat in constant volume C_v is as follows:

$$C_p - C_v = R \tag{1}$$

where R is the universal gas constant. The specific heat (capacity) ratio γ of a gas is:

$$\gamma = \frac{C_p}{C_v} \tag{2}$$

The specific heat ratio of gas γ is also called the adiabatic coefficient of gas. It is an important physical quantity, and often appears in various thermodynamic equations.

A schematic of the apparatus for measuring the value of γ is shown in Figure 1, whereas the experimental process is shown in Figure 2.

By adopting the remaining air in the container bottle at State II as the object under study, the experimental process is carried out as following (where P_0 is the ambient atmospheric pressure, T_0 is the room temperature, and V_2 is the volume of the bottle container):

Air inlet valve C₁
Air outlet valve C₂
AD590 temperature sensor
Sealant

Figure 2 Process flow-chart for measuring specific heat ratio of air

- Open valve C₂ to let air into the bottle container. Now, the air in the bottle has the same temperature and pressure as the ambient air. Then close C₂.
- 2) Open inlet valve C₁, pump some air into the bottle with the inflating ball and then close inlet valve C₁. Now, the air in the bottle is compressed with both pressure and temperature increased. Then, the air temperature will slowly drop as heat exchanges with the pumped air. Wait for the air temperature in the bottle to be stabilized at T_1 , which should reach T_0 if the waiting time is long enough and the ambient temperature is stable at T_0 . In practice, however, when the temperature change tends to stop, we can assume $T_1 \cong T_0$, and the resulting error on the experimental results is negligible. Now the gas is in State I (P_1 , V_1 , T_1). **Note**: the object under study is limited to the remaining air in the container bottle at State II, where volume V_1 will be smaller than V_2 since there is extra pumped-in air in the bottle apart from the object under study.

- 3) Open outlet valve C₂, let the air bottle open to the ambient air. When the pressure drops to P₀, immediately close C₂. Since the process of air releasing is very fast, the air in the bottle has almost no heat exchange with the outside air, so it can be approximated as an adiabatic expansion process. Now, the air state in the bottle is transformed from State I (P₁, V₁, T₁) into State II (P₀, V₂, T₂).
- 4) After the adiabatic expansion process, air temperature T_2 in the bottle is lower than the ambient temperature, so the air in the bottle will slowly absorb heat from the outside air. Wait for the air temperature in the bottle to be stabilized at T_3 , while recording the air pressure and temperature in the bottle as P_2 and T_3 , respectively. Now, the air state becomes State III (P_2 , V_2 , T_3). The process from State II to State III can be regarded as an isochoric process. Again, T_3 should reach T_0 if the waiting time is long enough and the ambient temperature is stabilized at T_0 . In practice, however, when the temperature change tends to stop, we can assume $T_3 \cong T_0$, and the resulting error on the experimental results is negligible. Now $T_0 = T_1 = T_3$, so State III can be written as (P_2 , V_2 , T_1).

From State I to State II is an adiabatic process, so we have:

$$P_{1}(V_{1})^{\gamma} = P_{0}(V_{2})^{\gamma}$$
(3)

State I and State III have the same temperature T_1 , so we have:

$$P_1 V_1 = P_2 V_2 \tag{4}$$

By taking logarithmic operation of (3) and then substituting the volume ratio from (4), we get:

$$\gamma = \frac{\ln P_1 - \ln P_0}{\ln P_1 - \ln P_2} = \frac{\ln(P_1/P_0)}{\ln(P_1/P_2)}$$
(5)

It is apparent from Equation (5) that the air specific heat ratio can be derived by measuring P_0 , P_1 , and P_2 . The schematic diagram of temperature measurement is shown in Figure 3 using an AD590 as the temperature sensor.

Figure 3 Schematic of temperature measurement using AD590 sensor

A standard 5 k Ω resistor and a 6 VDC voltage source are built in the electric unit. Connecting AD590 temperature sensor with the 6 VDC power supply creates a stable current flow source with a temperature sensitivity of 1 μ A/°C; while by connecting the 5 k Ω resistor in series with the AD590 sensor and source, an current-to-voltage converter is achieved with a temperature sensitivity of 5 mV/°C. Using a 4-1/2 digit voltmeter to measure this signal, the temperature sensitivity can be 0.02 °C. If U represents the voltage in unit of mV, the measured temperature in unit of degrees Celsius is:

$$T = \frac{U}{5} - 273$$
 (6)