LEOI-65 Experimental Apparatus of

Thermal Radiation and Infrared Thermography

Theory

1) Thermal Radiation and Blackbody Radiation Theory

In the 19th century, key advancements were made in the study of thermal radiation. In 1858,
Balfour Stewart’s experiments revealed that an object’s ability to radiate is correlated with its
absorptivity. Lampblack surfaces exhibit the strongest emission and absorption, and the radiation
characteristics follow Helmholtz's reciprocity principle, indicating a mutual relationship between

emission and absorption properties.

In 1859, Kirchhoff proposed the law of thermal radiation, stating that at thermal equilibrium, the
ratio of an object’s emissivity to its absorptivity is a universal function, independent of the

material. That is, at the same temperature, the ratio of monochromatic emissive power M (A4,T)
to monochromatic absorptivity of a radiating body «(A4,T)depends only on a function f(A4,T)

of the wavelength 4 and temperature T, and can be expressed as:

M(A1,T)

«(1T) =f(4,T). (1)

A body whose emission matches this function «(A,T)=1at all wavelengths is called an ideal

blackbody, or simply blackbody. The blackbody emits uniformly in all directions, thus it is a
perfect Lambertian (cosine) emitter. Objects with emissivity less than a blackbody, but whose
emission intensity at each wavelength remains proportional to the corresponding blackbody
intensity at the same temperature, are known as gray bodies. Absolute blackbodies and gray
bodies do not exist in nature; real materials exhibit wavelength-dependent emission—called
selective radiators. However, over narrow wavelength ranges, materials can be approximated as

gray bodies.

In 1879, Stefan empirically discovered that the total emissive power of a blackbody is
proportional to the fourth power of its absolute temperature. In 1884, Boltzmann provided a

rigorous theoretical proof. The mathematical expression is:



M(T)=oT*. )

This is the Stefan-Boltzmann Law, where M(T) is the total emissive power, T is the

thermodynamic (absolute) temperature, and & =5.67032x10°W -m?-K™ is the Stefan—

Boltzmann constant.

In 1893, Wien, supported by thermodynamics, spectroscopy, electromagnetism, and optics,
proposed the Wien's Displacement Law, stating that the product of the absolute temperature of

a blackbody and the wavelength at which its emissive power peaks is a constant:

AT=b, 3)

m

where A_is the wavelength corresponding to the peak emission, and b =2.89777x10°m-K is

Wien’s constant. This law indicates that as a blackbody's temperature increases, its peak
radiation shifts toward shorter wavelengths. Wien’s law agrees with the short-wavelength portion
of blackbody radiation curves and is applicable across the entire emission spectrum. It represents

the most comprehensive insight into blackbody radiation available from classical physics.

In 1900, British physicist Rayleigh, based on the equipartition theorem, derived the Rayleigh—
Jeans law for blackbody radiation energy distribution:
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u(,T) = < v* (4)

where u(v,T) is the spectral energy density, k =1.38066x102*J / K is Boltzmann’s constant, C

is the speed of light in a vacuum, and v is the frequency of the radiation. While this formula
agrees with experiments at long wavelengths, it diverges at short wavelengths where it predicts
infinite energy—a problem historically termed the *"ultraviolet catastrophe', which exposed

the limitations of classical physics and catalyzed the development of modern physics.

Also in 1900, Planck, building on prior work, used interpolation to reconcile Wien’s and
Rayleigh—Jeans’ formulas, and derived a formula that agreed with experimental data across all

wavelengths:
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where h=6.62676x10"*J -sis Planck’s constant. Planck's formulation led him to propose the
groundbreaking quantum hypothesis: electromagnetic radiation of frequency v is emitted or
absorbed in discrete units (quanta) of energy E =ho . These indivisible energy packets are called

energy quanta.

Planck’s radiation law matched both theory and experiment, accurately explaining blackbody
radiation phenomena. It converges with Rayleigh-Jeans at low frequencies and avoids the
ultraviolet catastrophe at high frequencies. Planck’s work is one of the cornerstones of quantum
physics, introducing the concept of energy quantization, which laid the foundation for quantum
mechanics. Although initially viewed as a mathematical trick, Planck’s quantum hypothesis was

later expanded by Einstein and others, becoming central to modern quantum theory.
2) Factors Affecting Thermal Radiation Transmittance in Media
a) Absorption Properties

Different materials absorb thermal radiation to different extents. According to Planck’s
law, thermal radiation energy depends on both temperature and wavelength. A material’s
absorption depends on its molecular structure and electron energy levels, meaning its

absorption varies across wavelengths.
b) Reflective Properties

A material’s reflectivity also influences transmittance. Per Kirchhoff’s law, an object’s
absorptivity and emissivity are numerically equal. Therefore, highly reflective materials

tend to have lower transmittance.
c) Transmission Characteristics

A medium’s transmittance results from the combined effects of absorption and reflection.
Solids and liquids, due to dense molecular structures, usually block radiation and thus
have low transmittance. Gases, with greater molecular spacing, typically have higher
transmittance. For instance, air transmits thermal radiation well, while water vapor

absorbs strongly at certain wavelengths.

d) Microscopic Structure



At the microscopic level, thermal radiation propagates through media in accordance with
Maxwell’s equations. Interaction between radiation waves and particles (like electrons or
ions) alters the radiation's direction. These interactions vary by material, leading to
distinct macroscopic radiation properties.

e) Material Thickness

Thicker media increase the path length of radiation, enhancing absorption and scattering,

which reduces transmittance.
3) Infrared Thermal Imagers

Infrared thermal imagers detect thermal radiation emitted by objects using infrared detectors that
convert the incoming radiation into electrical signals. Common types include HgCdTe

(Mercury Cadmium Telluride), InSb (Indium Antimonide), and microbolometers.

The electrical signals are amplified and digitized, then processed into grayscale or pseudo-color
images that reflect surface temperature or radiation distribution. Thus, thermal imagers provide

visual representations of an object’s thermal state.

Thermal radiation spans wavelengths from 0.75 pum to 1000 um. Infrared imagers typically
operate in the 8-14 um range, which allows good atmospheric penetration and is widely used in

thermal imaging.

Environmental factors such as atmospheric conditions and surface reflectivity affect image

accuracy and measurement precision.
4) Influence of Emissivity on Infrared Thermographic Measurements

Emissivity is the ratio of energy emitted by a surface to that emitted by a blackbody at the same
temperature. A perfect blackbody has emissivity 1. Real materials vary based on composition,

surface texture, shape, viewing angle, wavelength, and temperature.

Objects with high emissivity (like wood, fabric, or human skin) emit infrared radiation
efficiently, making their temperature easier to measure accurately. For example, human skin has

an emissivity around 0.98.



Objects with low emissivity (like polished metals) reflect more environmental radiation,
potentially skewing infrared readings. For example, polished copper or aluminum may have

emissivity below 0.10, reflecting surroundings like a mirror.
Therefore, correct emissivity settings are critical for accurate temperature readings.
5) Measuring Emissivity Using Infrared Thermography

Thermal imagers determine temperature by detecting emitted radiation. In practice, the total
radiation detected includes: Emitted radiation from the object, Reflected environmental radiation,
and Atmospheric radiation.

The detected radiation intensity is:

W, =eW,, (To) + oW, (T,) = &, W, (To) + -, W, (T,) (6)
where: the 1% term is the radiation from object surface, the 2" term is the radiation from the
environment, T, is the object temperature, T, is the equivalent radiation temperature of
environment. &,, p,and «, are respectively emissivity, reflectivity and absorptivity of object

surface.

The formula for temperature measurement of infrared thermal imagers is given by:
f(Tr):Ta[gf(T0)+(l_a)f(Tu)]+gaf(Ta) ' (7)
Where: T, is the indicated radiation temperature, r, is atmospheric transmittance, ¢, is

atmospheric emissivity, T, is atmospheric temperature.

When the measured surface is a blackbody, the atmospheric transmittance z, =1, and the
emissivity ¢, =0, then the radiation temperature indicated by the thermal imager is equal to the

true surface temperature of the object f(T,) = f(T,).

When <1, the radiation temperature indicated by the thermal imager is not equal to the true
temperature of the object. In equation (7), if « =&, meaning the measured object can be

considered a gray body, and ¢, =1-r,, then the following holds:

F(T) =7, [T (T)+A-&) f (T)]+A-7,) F(T,) . (8)



Eq. (8) is the basic formula for calculating temperature of a thermal imager.
From Planck’s formula (5), converting frequency to wavelength for thermographic applications:
C 1
f(T)=.[MRAWM(T)dA=J'MRAETd/1, 9)
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Where:  C, =2zhc® =3.7418x10™W-m*> is  the  first  radiation  constant,

C, :% =1.4388x107m-K is the second radiation constant, and R, is the spectral response of

the imager.

When ignoring the wavelength dependence of R, , integrating (9) yields the approximate

temperature relation:

f(T)~CT" . (10)

when wavelength is between 2 ~5um, C =7.2768x10%, n=9.2554 ; wavelength is 8 ~13um,
C =1.9675x10"2, n=3.9889.

Placing (10) into (7), the emissivity is:

T =7, [T +(1-a)T," |+£,T,". (11)
When using thermal imagers operating in different wavelength bands, the value of n varies.
For short-distance measurements, it can be assumed that the atmospheric transmittance 7, =1,

and the atmospheric emissivity ¢, =0. If the surface of the measured object satisfies the gray

body approximation, i.e., £ = «, then the object's emissivity can be calculated using Equation
(12):

g=_r U (12)

For the thermal imager included in the LEOI-65 apparatus, n=3.9889~4 , as long as the

radiation temperature indicated by the thermal imager T,, the actual temperature of the object T, ,



and the ambient temperature T, are known, the emissivity of the object can be calculated using

Equation (12).



