5. Experiment Contents

- A. Measure the I-V characteristic of a photocell at positive bias without light illumination (e.g. cover the photocell with a black paper), Bias Switch turn to right, DC bias continuously adjustable from 0 to 3.0 V.
- 1) Referring to Figure 3, connect photocell to the electric box,

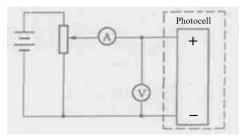


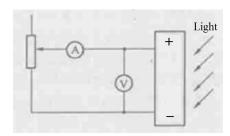
Figure 3.

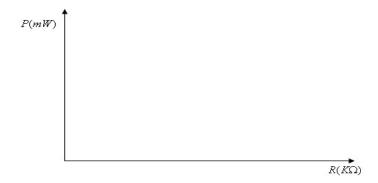
- 2) Change the applied bias voltage from 0 to 3.0 V with step 0.3 V, record a set of I and V values,
- 3) Plot I-V curve, acquire constant $\beta = \frac{q}{nKT}$ and I₀.

Write down data in the table:

U(V)	0	0.3	0.6				
$I(\mu A)$							

- B. Without bias, illuminate the photocell with white light at a distance about 20 cm, remain illuminating light intensity unchanged during this experiment.
- 1) Referring to Figure 4, connect photocell to the electric box,




Figure 4.

2) Change load resistance, record a set of I and V values:

$R(k\Omega)$	0	1	2	3	4	5	6	7	8	9	10
--------------	---	---	---	---	---	---	---	---	---	---	----

U(V)						
$I(\mu A)$						

- 3) Plot I-V curve,
- 4) Acquire short circuit current $I_{\it SC}$ and open circuit voltage $U_{\it OC}$,
- 5) Plot a curve of the output power $P(P=U \times I)$ vs. the load resistance R,

- 6) Find the maximum output power of the photocell and write down the load resistance at maximum power,
- 7) Calculate fill factor $FF = P_{\text{max}}/I_{SC}U_{OC}$.

C. Study photoelectric effect and electro-optic effect of a photocell.

- 1) Referring to Fig. 4, connect wires,
- 2) Measure the light power at a distance 20 cm away from the white light source using the light meter, which is set as the standard light intensity, J_0 ;
- 3) Change distance of the photocell from the light source, measure the light power at this position, set the reading as J;
- 4) Measure short circuit current $I_{\it SC}$ and open circuit voltage $U_{\it OC}$,
- 5) Repeat Steps 3) and 4) to acquire a series of J values and corresponding I_{SC} and U_{OC} ,
- 6) Plot the relationship curve between I_{SC} and J/J_{θ} , find the approximate function relationship between I_{SC} and J/J_{θ} ,

7) Plot the relationship curve between $U_{\it OC}$ and J / $J_{\it 0}$, find the approximate function relationship between $U_{\it OC}$ and $J/J_{\it 0}$.