
4. Theory 

4.1 Fraunhofer Diffraction 

4.1.1 Fraunhofer Diffraction at a Single Slit 
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Figure 1 Schematic of Fraunhofer diffraction from single slit 

Fraunhofer diffraction is the diffraction of parallel light rays, the so-called far-field diffraction, 
which can be treated and explained by using the Huygens’ Principle. As a plane wave is incident 
on a long, narrow slit, secondary waves are emitted. These secondary waves are spherical, as if 
there were an infinite number of point sources across the aperture. From a particular observation 
point, each source has a different optical path that introduces a phase relationship between the 
waves emitted from the aperture. The total intensity of the waves emitted from the aperture bears 
a simple relationship with regard to the angle of diffraction, as described in many textbooks. In 
the observation plane, we may write: 
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u  , a: the slit-width, : the light wavelength, and  : the angle of diffraction. 

When 0u , namely, 0 , maximum diffraction occurs, so the relative intensity is 1/ 0 II ; 

When nu  , namely,  na sin , where n is an integer, minimum diffraction occurs (I = 0).  

Let 0)
sin

( 
u

u

du

d
, we get the conditions of secondary maxima: 
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By calculating, we have the following table: 
 

u sin() I/I0 
±1.43π ±1.43λ/a 0.047 
±2.46π ±2.46λ/a 0.017 
±3.47π ±3.47λ/a 0.008 

… … … 



 

From the above table, the intensity of Fraunhofer diffraction at a single slit is illustrated in the 
following figure. 
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Figure 2 Intensity distribution of Fraunhofer diffraction at single slit 
 

The divergence angle of a laser is very small, so the laser beam can be considered as a parallel 
beam. A laser can be used as the source for Fraunhofer diffraction as shown in Figure 3. If the 
distance between the detector and the slit is far enough so that the difference between AP0 and 
OP0 is far less than the laser wavelength, λ, the condition of Fraunhofer diffraction is satisfied. 
Let’s prove it.  
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Figure 3 Schematic of far-field Fraunhofer diffraction 
 

If the slit-width, a, is considered far less than the observation distance from the slit, l , then 

AP0-OP0=
l
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In the experiment, if l = 0.8 m, a = 0.1 mm, then 
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=15.6 nm, which is far less than λ (632.8 nm). Hence, the far-field condition for Fraunhofer 

diffraction is satisfied. 

4.1.2 Fraunhofer Diffraction at a Multi-Slit 

When the single slit is replaced by a ‘multi-slit’ that has N evenly-spaced slits with a width of a 
for each slit and a slit-to-slit separation of d, the resulted intensity of diffraction is the intensity 
distribution from N coherent sources multiplied by the diffraction pattern from a single slit. The 
interference pattern is determined by the phase angle β=(π×d×sin)/, where λ is the wavelength 
of light, and θ the angle of diffraction or angle of observation. Because the diffraction pattern is 
determined by u=(2π×a×sin)/2, the net result is 
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where (sinu)/u or (sinu)2/u2

 
is a diffraction function and (sinNβ)/(sinβ) or (sinNβ)2/(sinβ)2 is an 

interference function. 

Based on equation (1-4), the following picture shows the normalized interference function with 
different N values, 
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Figure 4 Normalized interference intensity distribution of N coherent sources 
 



1) Peak values, positions, and numbers of the principal maxima 

When  k , namely 
d

k
 sin  ),3,2,1,0( k , then 

22
0 )

sin

sin
()

sin
(


N

u

u
II  = 2

0
2 )

sin
(

u

u
IN                                        (1-5) 

Obviously, the principal maximum diffraction intensity from a multi-slit with N evenly-spaced 
slits is N2 times the diffraction intensity at a single slit. 

Considering 1sin  , so /dk   

Let d4.0 , then k  can only take 2,1,0  . 
If d , then 0k , it means there is only zero order. 
 
2) Positions of zero intensity points, numbers of the secondary maxima 

Between these principal maxima there are weak secondary maxima. Let 0sin N  and 
0sin  , we can get these positions of zero intensity points. 
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where ,2,1,0 k ; 1,,2,1  Nm  . 

Because there are (N–1) zero points between two principal maxima, and there is a secondary 
maximum between the consecutive zero points, the number of secondary maxima is N–2. The 
following figure shows the influence of the diffraction function (N = 5, d = 3a). 

 

Figure 5 Diffraction intensity (c) of 5-slit (N = 5, d = 3a) 



It shows that the interference function (b) is modulated by the diffraction function (a), yielding 
the net result shown in (c). For d = 3a, the third order (k = 3) principal maximum of the 
interference function coincides with the first zero position of single slit diffraction. This is the so-
called missing order phenomenon. 

4.1.3 Fraunhofer Diffraction at a Single Circular Aperture 

When light from a point source passes through a small circular aperture, it produces a diffuse 
circular disc known as the Airy’s disc. The diffraction pattern is given by: 
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where D is the diameter of the circular aperture, )(1 xJ is the first-order Bessel function, and λ is 
wavelength of the source. The following table gives some values of the Bessel function: 

 
x 0 1.220π 1.635π 2.233π 2.679π 3.238π 

2
1 ]/)(2[ xxJ  1 0 0.0175 0 0.0042 0 

 
So the first minimum (dark ring) condition is: 

 22.1sin a                                                      (1-8) 

and the Rayleigh criterion, or the equation for angular resolution is 

d

 22.1min                                                        (1-9) 

4.2 Fresnel Diffraction 

Fresnel diffraction or near-field diffraction is a process of diffraction that occurs when a wave 
passes through an aperture or slit, and diffracts in the near field. It occurs when the source and 
the observation distance are relatively close to the obstacle forming the diffraction pattern. If the 
source, the obstacle, and the observation distance are far enough away that both incident and 
diffracted waves are considered parallel, then Fraunhofer diffraction occurs.  
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Figure 6 Diffraction geometry - aperture and image planes with coordinate systems 



The Fresnel Diffraction Integral 

The diffraction pattern of the electric field at a point (x, y, z) is given by: 
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Where 2 2 2( ') ( ')r x x y y z     , i  is the imaginary unit, and cos = z/r is the cosine of the 

angle between z and r. 
 
Analytical solution of this integral is impossible for all but the simplest diffraction geometries. 
Therefore, it is usually calculated numerically. 
 
The Fresnel approximation 

The main problem for solving the above integral is the expression of r. First, we can simplify the 
algebra by introducing the substitution: 2 2 2( ') ( ')x x y y     . 

Substituting it into the expression for r, we get 
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Next, using the Taylor series expansion 
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We can express r as 
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     (1-12) 

The key to the Fresnel approximation is to assume that the third element in the Taylor series in 
equation (1-12) is very small and therefore can be ignored. In order to make this assumption, this 
third element has to contribute to the variation of the exponential as an almost null term. In other 
words, it has to be much smaller than the period of the complex exponential, i.e. 2π: 
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By expressing k in terms of the wavelength, k = 2π/, we get the following relationship: 
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Multiplying both sides of equation (1-14) by z/λ, we have 
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Or substituting the earlier expression for ρ2 
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If this condition holds true for all values of x, x', y, and y', then we can ignore the third term in 
the Taylor expression. Furthermore, if the third term is negligible, then all terms of higher order 
will be even smaller, so we can ignore them as well. We can then approximate the expression 
with only the first two terms, as: 

2 2( ') ( ')

2

x x y y
r z

z

  
       (1-17) 

Thus, equation (1-17) is the Fresnel approximation, and the inequality (1-16) is the condition for 
the Fresnel approximation. 
 
Fresnel Diffraction 

The condition stated in inequality (1-16) for Fresnel approximation is fairly weak, since it allows 
all length parameters to take comparable values, provided the aperture is much smaller than the 
path length. Moreover, if we are interested in the field only in a small area close to the origin, i.e. 
for values of x and y much smaller than z, then we can assume 0  , which means cos 1   and 
r in the denominator of the Fresnel integral can be approximated by r z  

Unlike Fraunhofer diffraction, Fresnel diffraction has to consider the curvature of the wavefront, 
in order to correctly calculate the relative phase of interfering waves. 

For Fresnel diffraction, the electric field at point (x,y,z) is given by: 
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This is the Fresnel diffraction integral; it means that, if the Fresnel approximation is valid, the 
propagating field is a spherical wave that originates at the aperture and moves along z direction. 
The integral modulates the amplitude and phase of the spherical wave. Analytical solution of this 
expression is only possible in rare cases.  
 


