1. Experimental Objectives

- 1) Understand the Poiseuille law.
- 2) Learn how to measure viscous and surface tension coefficients of liquid using Ostwald viscometer.
- 3) Master the measurement principle of comparison method and recognize its application in practice.

2. Experimental Procedure

Measurement of viscosity coefficient of alcohol

- 1) Set up main unit
 - a) Place the main unit on a stable table.
 - b) Pour water into the glass beaker to the "Water Line" marked on the beaker.
 - c) Place the magnetic rotor in the water, then put the beaker at the specific location on the main unit.
 - d) Wire the sensor and heater to the main unit.
 - e) Turn on power of the main unit.
 - f) After adjusting the "Adj." knob of the motor in clockwise direction to maximum, turn on motor switch. Now, the magnetic rotor rotates with a relatively high speed. Next, turn the "Adj." knob in count-clockwise direction to near minimum to get a proper rotation speed of the rotor.
 - g) Set temperature T above room temperature to heat the water in beaker (see next step).
- 2) Set up constant temperature controller
 - a) After powered on, the digital meter displays "FdHC" initially, then "Axx.x" for the current temperature, and finally " $b = = \cdot =$ " for setting the control temperature.
 - b) Press "Up" or "Down" button to increase or decrease temperature, then press "Set" button to set temperature to start heating.
 - c) If necessary, press "Reset" button to reset temperature while waiting unill "b---" is displayed on the meter. Then repeat step b) to set temperature.
 - d) During heating, press "Set" button to alternatively display preset temperature (meter displays with letter "b") and current temperature (meter displays with letter "A")
- 3) Clean Ostwald viscometer
 - a) Inject 6-10 ml alcohol into ball *b* as seen in Figure 2.
 - b) Open the valve of the rubber ball, squeeze with hand to expel internal air, and close the valve.
 - c) Release hand slowly to suck alcohol from ball *b* into ball *c* by letting liquid surface slightly over line *m* (**Note**: do not suck alcohol into the rubber ball).
 - d) Squeeze the rubber ball again to pressure alcohol back into the large tube.

- e) Repeat the above steps 3 times. Then pour out alcohol into a recycle container.
- 4) Inject 6-8 ml alcohol into viscometer.
- 5) Place the viscometer into the beaker and fix it in vertical direction.
- 6) Suck alcohol from ball b into ball c by letting liquid surface slightly over line m (Note: do not suck liquid into the rubber ball).
- 7) Open the valve of rubber ball, liquid surface falls freely. Use a stopwatch to measure the time that the liquid surface takes to fall from line *m* to line *n*.
- 8) Repeat steps 6 and 7 to measure 3 5 sets of data.
- 9) Squeeze the rubber ball to pressure all alcohol into the large tube, and then pour it out.
- 10) Use 6-10 ml pure water to clean the viscometer per step 3) again.
- 11) Inject the same volume of water as in step 4) into the viscometer, and repeat steps 5), 6), 7) and 8).
- 12) Use formula (13) to derive the viscosity coefficient of alcohol at a certain temperature T.

Measurement of surface tension using Ostwald viscometer

- 1) Clean the Ostwald viscometer and pipette using distilled water. After they are dry, set the temperature controller at a certain temperature such as 30 °C and wait until the temperature is stabilized at this temperature.
- 2) Inject 10 ml liquid-under-test into the viscometer using the pipette. Use the rubber ball to suck the liquid from the top of ball *c* and let the liquid surface reach ball *c*. Then let it fall freely.
- 3) After liquid is stationary, measure the height difference between both sides using the scale lines on the outer wall of the beaker.
- 4) Pour out the liquid-under-test. Repeat steps 1) to 3) by injecting a standard liquid (pure water).
- 5) Use formula (16) to calculate the surface tension coefficient of the liquid-under-test.

3. Example of Data Recording and Processing

Note: the following data are for reference purposes only, not the criteria for apparatus performance.

	Pure water	•			
$T(^{\circ}C)$	t_1 (s)	t_{2} (s)	<i>t</i> ₃ (s)	Average t (s)	Density ρ_1 (kg/m ³)
30	63.56	63.57	63.69	63.61	995.67
32	61.21	61.16	61.12	61.16	995.05
34	58.87	58.85	58.85	58.86	994.40
36	56.78	56.72	56.75	56.75	993.71
38	54.69	54.78	54.72	54.73	992.99

Measurement of viscosity coefficient of alcohol

	Alcohol				
<i>T</i> (°C)	$t_{1}(s)$	t_2 (s)	<i>t</i> ₃ (s)	Average t (s)	Density ρ_2 (kg/m ³)
30	99.75	99.81	99.94	99.83	780.97
32	96.4	96.66	96.65	96.57	779.27
34	93.56	93.34	93.53	93.48	777.56
36	90.44	90.34	90.41	90.40	775.85
38	87.44	87.56	87.62	87.54	774.14

	Pure water	Alcohol				
<i>T</i> (°C)	$\eta_{\rm ref}(10^{-7}{\rm Pa}\cdot{\rm s})$	$\eta_{\text{mea}} (10^{-7} \text{Pa} \cdot \text{s})$	$\eta_{\rm ref}(10^{-7}{\rm Pa\cdot s})$	Error (%)		
30	8007	9857	9885	0.29		
32	7679	9496	9536	0.42		
34	7371	9154	9204	0.55		
36	7085	8812	8888	0.86		
38	6814	8497	8586	1.04		