1. Experimental Contents

- 1) Measure the magnetic field intensity point by point along the axis of a single currentcarrying coil, and compare results with theoretical values.
- 2) At fixed current, measure on-axis magnetic field intensities B(a) and B(b) of two single coils *a* and *b*, and compare with the magnetic field intensity B(a+b) of Helmholtz coils.
- 3) Measure the magnetic field distribution along the axis of Helmholtz coils with different coil spacing of R/2, R, and 2R, and verify the magnetic field superposition principle.
- 4) Plot the magnetic field distributions of a single current-carrying coil and Helmholtz coils, respectively.
- 5) Measure the horizontal component of the earth's magnetic field.

2. Experimental Procedure

- A. Measure magnetic field intensity on central axis of a single coil and Helmholtz coils
 - For a single coil, refer Figure 1 to connect wires of coil *a* and set the current of the coil to *I*=100 mA. Move the probe and measure magnetic flux density *B*(*a*) along the axis of coil *a* by recording data in every 1.0 cm. Note: prior to measurement, turn off current (*I*=0 mA) and zero the Tesla meter.
 - 2) Compare the measured magnetic field intensity at the center of the coil with theoretical value.
 - 3) Rotate the Tesla probe at a point along the axis while observing the direction of the magnetic field at this point.
 - 4) For Helmholtz coils, adjust the spacing between the two coils to 10.0 cm for the formation of Helmholtz coils.
 - 5) Set current at I=100 mA to single coil a and b, respectively, while measuring magnetic field intensities B(a) and B(b) along axis, respectively. Next, apply current to both coils simultaneously while measuring magnetic field intensity B(a+b) along the axis. Verify B(a+b)=B(a)+B(b), the magnetic field intensity at any point along the axis of Helmholtz coils is the summation of that of two single coils.
 - 6) Adjust the spacing of the two coils at R/2 and 2R, respectively while measuring the magnetic field intensity along the axis at current I=100 mA.
 - 7) Plot magnetic field intensity *B* of the Helmholtz coils versus position z (*B*~z graph) at d=R/2, d=R, and d=2R, respectively. Verify the magnetic field superposition principle.

B. Map the magnetic induction lines on a plane through the axis of a currentcarrying coil

Place a piece of coordinate paper on the board which is through the axis of the Helmholtz coils, select a proper point, aim the probe at the point, and apply current I=100 mA to the Helmholtz coils. Rotate the probe while observing the change in magnetic field intensity. The normal direction of the sensor at which a maximal reading is observed from the sensor is the direction of the magnetic field at this point. Compare the directional change in magnetic field between on-axis points and off-axis points. Approximate the distribution map of the magnetic field lines of current-carrying Helmholtz coils.

3. Examples of Data Recording and Processing

Note: Following data are for reference purposes only, not the criteria for apparatus performance.

1) Measure the magnetic field intensity B(a) on the axis of a current-carrying coil (a) are shown in Table 1, where current I=100 mA, coil average radius R=10.00 cm, number of turns of the coil N=500, and the permeability in vacuum $\mu_0=4\pi \times 10^{-7}$ H/m.

<i>x</i> (cm)	-1.00	0.00	1.00	2.00	3.00	4.00	5.00
B(a) (mT)	0.300	0.316	0.312	0.297	0.278	0.251	0.225
x (cm)	6.00	7.00	8.00	9.00	10.00	11.00	12.00
B(a) (mT)	0.198	0.173	0.150	0.130	0.113	0.097	0.083

Fable 1	
---------	--

According to formula (2), the magnetic field intensity at the center of coil *a* is as follows:

$$B_0(a) = \frac{\mu_0}{2\overline{R}} N \cdot I = \frac{4\pi \times 10^{-7} \times 500 \times 0.100}{2 \times 0.1000} = 0.314 \text{ mT}$$

In Table 1, the measured result at the center is $B_0(a)=0.316$ mT, yielding a measurement error of 0.64%.

According to formula (1), the magnetic field intensity at x=5.00 cm is calculated as:

$$B_5(a) = \frac{\mu_0 \cdot \overline{R}^2}{2(\overline{R}^2 + x^2)^{3/2}} N \cdot I = \frac{4\pi \times 10^{-7} \times 0.100^2 \times 500 \times 0.100}{2(0.100^2 + 0.0500^2)^{3/2}} = 0.2248 \,\mathrm{mT}$$

In Table 1, the measured result at x=5.00 cm is $B_5(a)=0.225$ mT, yielding a small measurement error.

2) Verify magnetic field superposition principle. The current in Helmholtz coils is I=100 mA, and the spacing of the two coils is d=10.00 cm. Set the central point of the two coil axis as the coordinate origin. Measured data are shown in Table 2, where *a* and *b* represent single coil a and *b*, respectively; and (a+b) represents Helmholtz coils.

x (cm)	-7.00	-6.00	-5.00	-4.00	-3.00	-2.00	-1.00	0.00
B(a) (mT)	0.295	0.309	0.316	0.312	0.297	0.278	0.251	0.225
B(b) (mT)	0.080	0.093	0.112	0.128	0.148	0.172	0.195	0.224
[B(a)+B(b)] (mT)	0.375	0.402	0.428	0.440	0.445	0.450	0.446	0.449
B(a+b) (mT)	0.381	0.408	0.428	0.440	0.448	0.451	0.450	0.451

Table 2

<i>x</i> (cm)	1.00	2.00	3.00	4.00	5.00	6.00	7.00
B(a) (mT)	0.198	0.173	0.150	0.130	0.113	0.097	0.083
B(b) (mT)	0.251	0.275	0.296	0.308	0.312	0.307	0.394

[B(a)+B(b)] (mT)	0.449	0.448	0.446	0.438	0.425	0.404	0.377
B(a+b) (mT)	0.451	0.451	0.448	0.441	0.427	0.405	0.379

From Table 2, it is apparent that the values of B(a)+B(b) and B(a+b) are consistent within error limit, proving the magnetic field superposition principle. Range from -2.50 cm to 2.50 cm has a uniform magnetic field. At *x*=0.00 cm, the measured magnetic field intensity is B_0 =0.449 mT while the corresponding theoretical value can be calculated using formula (4):

$$B'_{0} = \frac{8}{5^{3/2}} \cdot \frac{\mu_{0} \cdot N \cdot I}{\overline{R}} = \frac{8}{5^{3/2}} \frac{4\pi \times 10^{-7} \times 500 \times 0.100}{0.1000} = 0.450 \,\mathrm{mT}$$

Therefore, the error limit is within 1%.

3) Change the spacing between the two coils, at d=R/2, d=R, and d=2R, respectively, while measuring the magnetic field intensity at various positions along the axis. Measured data are plotted as shown in Figure 2.

Figure 2 Magnetic field intensity distributions with different coil spacing