
2. Theory 

1) Simulation of electrostatic field using current field 

From electromagnetism theory, it is known that there is a similarity between a current field of 
steady current in a conductive material and a static electric field in dielectric media (or 
vacuum). In the no source region of a current field, current density vector j meets the 
conditions: 

 ∮j×ds=0   and    ∮j×dl=0     (1) 

In the no source region of an electrostatic field, the electric field strength vector E meets the 
conditions:   

∮E×ds=0   and   ∮E×dl=0      (2) 

From (1) and (2), it can be seen the current density vector j and the electric field strength vector 
E have the same mathematical form, so they have a similarity. If similar source distributions 
and boundary conditions are given, their mathematical models have same solution expressions.  
If two powered electrodes are placed in a conductive material, a current field will be generated 
in the material. There are some points having equal potential in the current field. These points 
can be measured and depicted in one plane, called equipotential plane. Similarly, there is also 
an equipotential surface in a static electric field. The electric field distribution is usually in 
three-dimensional space, while for the simulation on the surface of a conductive plate, the 
electric field distribution is measured in a horizontal plane. This way the equipotential surface 
becomes equipotential lines. As the current lines and the equipotential lines are orthogonal, the 
current lines can be drawn. The tangent direction at every point on a current line is the 
direction of the electric field strength E at corresponding point. Therefore, an electrostatic field 
distribution can be simply represented by equipotential lines and current lines.  

To avoid an effect on the current line distribution when measuring equipotential lines in a 
current field, the measuring circuit cannot draw any current. Therefore, the measurement must 
use a voltmeter of high resistance or a balance electric bridge. 

2) Electrostatic field and current field of coaxial cable electrode 

Figure 1 shows a few examples of electrostatic field simulations. Figure 1(a) is the case of a 
coaxial cable electrode. Fix the coaxial electrode onto the surface of the conductive glass plate 
(with good contact) and apply a voltage V0 (A is positive and B is ground). The current in 
conductive glass will form a stable constant current field along radial direction axially 
symmetrical from A to B. This simulated current field is similar to a static electric field. Their 
similarity can be analyzed as follows. 



 

Figure 1 Examples of electrode patterns and corresponding electrostatic field equipotential 
lines distributions: (a) coaxial cable, (b) parallel-wire, (c) parallel-plane and (d) focusing 

electrode 

(i) Electrostatic field 

Figure 2 (a) shows the structure of a long coaxial cable. There is a long cylindrical conductor 
of radius r1 (electrode A) and a long tubular conductor of radius r2 (electrode B) in vacuum. 
Their centers are coincidence. Assume the potentials of A and B are VA=V1=V0 and VB=0 
(grounded), respectively, with equal but opposite charges, there will be an electric field 
between the two electrodes. Due to the symmetry, the electric lines will be uniformly 
distributed in any cross sections as seen in Fig. 2 (b). The equipotential surfaces of the electric 
field consist of series coaxial tubular surfaces. Electric lines and equipotential lines are 
orthogonal. The equipotential lines are closed lines, while the electric lines have both terminals 
that originate from positive charges and end at negative charges. For the metal central cylinder, 
the inside electric field intensity is zero and charges distribute on its surface. Electric lines start 
from the central cylinder and terminate at the inner surface of the tube wall. 

 

Figure 2 Electric field of a long coaxial electrode: (a) electrode structure, (b) electric line 
distribution in the perpendicular cross section, (c) electric line distribution in the longitudinal 

cross section, and (d) schematic for calculation 

To calculate the electrostatic field between A and B, we take a perpendicular cross section as 
shown in Figure 2 (d), and assume the charge amount on the inside circle and the outside circle 



are +∈ and -∈, respectively. Draw a circle between the two circles with radius r and assume 
the electric field strength on this circle is E, from Gaussian theorem, we have ∈= 2rεoE, i.e.  

E=－dv/dr=∈/2πεor      (3) 

From (3), we get: Vr= -∫Edr= -∈/2πεo∫dr/r= -K∫dr/r, therefore, 

Vr= -Klnr＋C      (4) 

where K=∈/2πεo. Applying boundary conditions: Vr=V1=V0 at r=r1 and Vr=V2=0 at r=r2, we 
get the solution of equation (4) as: 

Vr= V0·[ln(r/r2)/ln(r1/r2)]    (5) 

From (5), it can be seen that Vr and lnr have a linear relationship, and the relative potential 
Vr/V0 is only a function of coordinate r.  

(ii) Current field 

 

Figure 3 Current field of a long coaxial cable: (a) cable structure, (b) current line distribution in 
the perpendicular cross section, (c) schematic for calculation 

As seen in Fig. 3, the space between electrodes A and B is filled with uniform conductive 
material to simulate a field that is similar to a static electric field. This device is called 
“simulation model”. By measuring the simulated field, we can get the distribution of an 
electrostatic field. 

To calculate the potential difference of a current field, first calculate the resistance between the 
two cylindrical surfaces, then calculate the current, and finally calculate the potential difference 
between any two points. Assume the thickness of the thin conductive medium layer (such as 
conductive glass) is t and the resistivity is p, the resistance of the ring between any radius r and 
r+dr circle is:  

dR=p·dr/s=pdr/2πt·dr/r                        (6) 

Do integral operation from radius r to radius r2 using (6), the total resistance is: 

Rrr2=p /2πt ∫r2 r·dr/r=p/2πt·ln (r2/r)           (7) 

Similarly, the total resistance between radius r1 and r2 is: 

R12=p /2π t·∫r2 r·dr/ r=p/2πt·ln (r2/r1)         (8) 

Therefore, the current from the inner cylindrical surface to the outer cylindrical surface is: 

I12=V0 /R12=2πt /p ln(r2 /r1)·V0                   (9) 



The potential from the outer cylindrical surface (V2=0) to radius r is: 

Vr=I12·Rr r2=Rr r2/R12·V0                          (10) 

Substitute ⑺ and ⑻ into (10), we have:  

Vr=V0·(ln  r2/r)/(ln r2/r1 )=V0·(ln r/r2)/(ln r1/r2)     (11) 

Compare (11) with (5), it is seen that the potential distributions of a simulated current field and 
a static electric field are identical.  

The above discussion is an example of same potential distribution of an electrostatic field and a 
current field with same boundary conditions. It is difficult to obtain the electrostatic field of a 
complex electrode pattern using analytic method. In this case, the advantage is obvious to use a 
current field to simulate an electrostatic field. 

(iii) Electric field of a pair of long parallel lines 

As shown in Figure 4 (a), two long parallel cylindrical conductive lines A and B have opposite 
potential +V1 and -V1, respectively. Due to the symmetry, there exists many electric field 
planes perpendicular to the wires in the static electric field. Plane S is an example as shown in 
Figure 4 (a).   

 

Figure 4 Electric field of a pair of long parallel lines 

Use a uniformly conductive medium to fill the entire electric field space and connect a battery 
of potential 2V1 between electrodes A and B, to make a simulation model as shown in Figure 
4(c). The electric field distribution in the poor conductor will not change when a stable current 
exists.  

In the electric field of the long parallel wires, there exists a flat equipotential surface, i.e. the 
plane at the middle point of the connection line of the two wires, so that the simulation model 
can be simplified. Insert a metal plate at the middle plane, the metal plate will have same 
potential with the middle point of the 2V1 battery. Connect the metal plate with the 
equipotential point using a conductive wire to get the status as shown in Figure 4(d). Now, the 
current states on both sides of the metal plate will be same as that shown in Figure 4(c) and is 
left-right symmetric. In experiment, once the electric field of one half space is measured, the 
other half will be known.  
 


