
2. Theory 

A schematic of the electron diffraction tube of the apparatus is shown in Figure 1. A circular 

crystalline metal film target with a diameter of 15 mm is placed between the electron gun and 

the screen in the diffraction tube. Electron diffraction pattern is formed by the direct hitting of 

an electron beam on the crystal surface.  

 

Figure 1 Schematic of electron diffraction tube  

In the electron gun portion, electron beam is emitted from the cathode which is heated by the 

filament, is further accelerated by an electric field of approximate 20 kV. After electrostatic 

focusing and deflection, the electron beam is focused onto the target surface. 

If an electron beam passing through the crystal film at speed v, the de Broglie wavelength of 

the electron beam is: 
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where h is Planck’s constant, p mv is the momentum of the electron, and m is the mass of the 

electron. Since the kinetic energy of the electron is: 
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where e is the charge of the electron and V is the accelerating voltage, the de Broglie 

wavelength of the electron beam can be rewritten as: 
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Since m=9.109×10−31 kg, e=1.602×10−19 C, and h=6.626×10-34 m2 kg/s, we get: 
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where  is in unit of nanometer (nm), and V is in unit of volt (V). Since atoms are aligned 

regularly in a crystal, they form a series of parallel planes in various directions with each serial 

parallel plane presented by Miller indices (h, k, l). By considering an electron beam hitting on a 

serial parallel plane of the atom structure, as shown in Figure 2, the condition of the beam 

exiting from the film is:  
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where n is an integer,  is the angle between the diffracted direction and the incident direction  

of the electron beam, and d is the distance between two adjacent parallel planes. 

 

Figure 2 Schematic of electron beam diffraction from a crystal film  

If  is small, sin can be approximated by =r/2D (small angle approximation), where r is the 

radius of a diffraction ring, and D is the distance between the target and the screen.  

 



The distance between two parallel planes of Miller indices (h, k, l) is: 
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where a is the lattice constant, i.e. the edge length of a single crystal cell. By substituting (6) 

into (5), we get 
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Let H nh , K nk and L nl , we have 
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This means that the nth order Bragg diffraction of any plane with Miller indices (h, k, l) can be 

considered as the first order Bragg diffraction of plane (H, K, L). 

Alternatively, one can abolish the small angle approximation while using the following sine 

function in Equation (8) 

 

 

Electron wavelength can be acquired by using Equation (3) or Equation (8) from which the 

crystal lattice constant or the Miller indices of a specific diffraction ring can be determined.  

For face-centered cubic crystals such as gold and aluminum, geometric structure factors 

determine that only planes of all even-numbered or odd-numbered Miller indices can generate 

diffraction patterns, while other planes have zero reflection. Thus, Miller indices for generating 

diffraction rings are limited as shown in the table below.   
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111 3 1.732 

200 4 2.000 



220 8 2.828 

311 11 3.316 

222 12 3.464 

400 16 4.000 

331 19 4.358 

 


