
2. Theory 

A. Faraday Effect 

As seen in Figure 1, if a magnetic field is not very strong, the rotation angle of the polarization 
direction of light transmitted through a medium under the magnetic field is proportional to the 
product of path length d of the light propagating in the medium and magnetic field strength B 
along the propagation direction in the medium, i.e. =VBd, here coefficient V depends on the 
medium and the wavelength of the light. It is a representation of the magneto-optic properties 
of a material, called the Verdet constant.  

 

Figure 1 Schematic of Faraday effect 

For paramagnetic, weak magnetic and diamagnetic materials (such as heavy flint glass), V is a 
constant. Therefore, rotation angle   has a linear relationship with the magnetic field intensity 
B; while for ferromagnetic materials (such as YIG cubic crystal material),  and B do not have 
a simple linear relationship. 

 

 

Table 1 lists the Verdet constants of some substances.  

Table 1 Verdet constants of common materials (in unit of rad·Tesla-1·cm-1) 

Material （nm） V 
Water 589.3 0.038 
CS2 589.3 0.121 

Light flint glass 589.3 0.092 
Heavy flint glass 830.0 0.233~0.291 

Crown glass 632.8 0.061~0.212 
Acrylic 632.8 0.0263 
Quartz  632.8 0.141 

Phosphorus 589.3 0.358 
MR3-2 magneto-optic glass 632.8 -0.959 

Different substances may differ in the direction of the polarization plane rotation. When 
observing along the magnetic field, if the rotation direction satisfies the right hand rule, it is 



called “right rotation” medium and its Verdet constant is positive (V>0); while the reverse 
rotation is known as “left rotation” medium and its Verdet constant is negative (V<0).  

For a given substance, Faraday rotation direction solely depends on the magnetic field direction. 
This differs from the natural optical activity effect of some substances, which is related to the 
light propagation direction. As a result, the rotation angle of the Faraday effect will double if 
light passes through the medium in a round trip. Similar to the inherent optical activity effect, 
the Faraday effect is also subject to optical rotatory dispersion, i.e. the Verdet constant is a 
function of wavelength. 

B. Zeeman Effect 

1) Relationship between total magnetic moment and total angular momentum  

Strictly speaking, the total magnetic moment of an atom consists of electron magnetic moment 
and nuclear magnetic moment while the former is three orders of magnitude larger than the 
latter. For this reason, only the electron magnetic moment is considered here. The orbital 
motion of an electron in an atom creates orbital magnetic moment, while the spin motion of an 
electron results in spin magnetic moment.  

Based on quantum mechanics, the numerical relationship between the orbital magnetic moment 

Lμ and the orbital angular momentum LP of an electron is as follows: 
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The relationship between the spin magnetic moment Sμ  and the spin angular momentum SP  is: 
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where e and m are the charge and mass of an electron, respectively; L and S are the orbital 
quantum number and spin quantum number, respectively. The total angular momentum of the 
atom, PJ, is the sum of orbital angular momentum and spin angular momentum; while the total 
magnetic moment μ is the sum of orbital magnetic moment and spin magnetic moment. Since 
 moves around PJ, the net projection of  on PJ is not zero (J0). The numerical relationship 
between J and PJ is written as:  
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is the Lande g-factor that determines the energy-level splitting amount in a magnetic field. 

2) Effect of external magnetic field on atomic energy levels 

In an external magnetic field, the introduced torque L on the total magnetic moment  of an 
atom is:   



BL J                                        (5) 

where B is the magnetic induction. Torque L forces angular momentum PJ moving around the 
magnetic field direction. This motion brings additional energy:  

                       cosBE J                                   (6) 

Substituting (3) into (6), we get: 
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Since the orientations of J and PJ are quantized in a magnetic field, i.e. the components of PJ 
are quantized in the direction of the magnetic field, and it must be an integer times of  as, 

                     MPJ cos    JJJM  ),.....,1(,            (8)  

There are totally 12 J magnetic quantum numbers. Substituting (8) into (7), we get: 
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Thus, one energy level is split into 2J+1 sub-levels in an external magnetic field with energy 
difference between sub-levels proportional to the external magnetic field B and the Lande g-
factor, as determined by Eq. (9). 

3) Selection rules of Zeeman effect 

If a spectral line is emitted by electron transition from energy level E2 to energy level E1 in the 
absence of an external magnetic field, frequency ν of the spectral line is given by  
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In the presence of an external magnetic field, the upper and lower energy levels are split into 
2J2+1 and 2J1+1 sub energy levels with additional energies ΔE2 and ΔE1, respectively. The 
frequency of the new spectral line ν’ is given by: 
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Therefore, the frequency difference between the spectral lines is: 
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If represented by wave number, Eq. (12) can be rewritten as: 
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The Lorentz unit L=eB/(4πmc)=4.67×10-3 Bm-1, where B is in unit of Gs (1 Gs= 410  T).   

There exist transition selection rules that must be met as: ΔM=M2-M1=0, ±1 with an exception 
of M2=0→M1=0 when J2=J1. 



(1) when ΔM=0, π lines are generated with linear polarization parallel to the magnetic field 
when observing along the direction perpendicular to the magnetic field. When observing along 
the magnetic field, light intensity is zero. 

(2) when ΔM=±1, σ± lines are generated (called σ lines) with linear polarization perpendicular 
to the magnetic field when observing along the direction perpendicular to the magnetic field. 
When the propagation direction of light is along the direction of the magnetic field, σ+ line is 
left-handed circularly polarized while σ- line is right-handed circularly polarized; when the 
propagation direction of light is 180 of the direction of magnetic field, the observed σ+ and σ- 
lines are right-handed and left-handed circularly polarized, respectively; when observed in 
other directions, π lines still remain as linearly polarized, but σ lines are circularly polarized. 

4) Zeeman effect of Mercury green line 

The Mercury green line used in this Zeeman experiment is at 546.1 nm between energy levels 
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3 6676 PpsSss  . The two energy levels with the corresponding quantum numbers, g, M, 

Mg and polarization, are listed in Tables 2 and 3. 

Table 2 Polarization of spectral lines 

Selection rules K⊥B (transverse) K∥B (longitudinal) 

△M= 0 Linearly polarized π component No light 

△M=＋1 Linearly polarized σ component right-handed circularly polarized  

△M=－1 Linearly polarized σ component left-handed circularly polarized  

where K is the optical wave vector, B is the magnetic induction vector, σ represents vector E⊥B, 
and π represents vector E∥B.  

 

 

Table 3 Quantum numbers of Mercury energy states 

Atomic states 73S1 63P2 

L 0 1 

S 1 1 

J 1 2 

g 2 3/2 

M 1,  0,  -1 2,  1,  0,  -1,  -2 

Mg 2,  0,  -2 3,  3/2,  0,  -3/2,  -3 

The Lande factor g and the splitting of the two atomic states in a magnetic field can be 
calculated by (4) and (7), with the transition diagram plotted in Figure 2. 



 
Figure 2 Zeeman effect and intensity distribution of Mercury green line 

As seen in the diagram, the upper and lower energy levels are split into 3 and 5 sub levels in an 
external magnetic field, respectively. The allowed nine transitions by selection rules are shown 
in the energy level diagram. The appropriate spectral locations of these spectral lines are drawn 
at the bottom of the energy level diagram with the wave number increasing from left to right 
equidistantly. The heights of these line segments represent the relative intensities of the actual 
spectral lines. 

5) Theory of Fabry-Perot etalon 

As the wavelength difference of Zeeman splitting is very small, a regular prism or grating does 
not have enough resolution to separate these spectral lines. In this experiment, a Fabry-Perot 
etalon is used to resolve Zeeman spectral line separations. The working principle of a F-P 
etalon is as follows. 

When a ray of light passes through a plane-parallel plate with two reflecting surfaces, it is 
reflected many times between the two surfaces and hence multiple-beam interference occurs. 
The higher the surface reflectance is, the sharper the interference fringes are. That is the basic 
principle of a Fabry-Perot interferometer. As shown in Figure 3, two partially reflecting 
mirrors G1 and G2 are aligned parallel to each other, forming a reflective cavity. When 
monochromatic light is incident on the reflective cavity with an angle θ, many parallel rays 
pass through the cavity to get transmitted. The optical path difference between two neighboring 
rays is given by , as: 
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Figure 3 Schematic of Fabry-Perot interferometer 

Thus, the transmitted light intensity is: 
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where I0 is the incident light intensity, R is the mirror reflectance, n is the refractive index of 
the medium in the cavity, d is the cavity length or mirror spacing, and  is the wavelength of 
the monochromatic light in vacuum.  

Thus, I’ varies with δ. When 
 mnd  cos2   (m = 0, 1, 2…)    (16) 

I’ becomes maximum so that constructive interference of the transmitted light occurs. 

Since the interference of an etalon is multiple-beam interference, the width of interference 
pattern becomes very fine (sharp). Usually, the resolution of an etalon is represented by the 
parameter of finesse F: 
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Considering two monochromatic light beams at wavelengths 1 and 2 with a small wavelength 
separation (1>2 and 12), e.g. the split light beams of a Mercury green line by Zeeman 
effect. For the same order of the interference m, as described in (16), the intensity Maxima of 
1 and 2 correspond to different incident angles 1 and 2, forming two sets of interference 
patterns. 

By increasing the wavelength separation (i.e. increasing magnetic field intensity), so the mth 
order maximum of 2 overlaps with the (m-1)th order maximum of 1, as 
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Under paraxial conditions (0), (16) can be rewritten as m=2d/, thus (18) can be simplified 
as: 
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Represented by wave number, (19) becomes: 
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The calculated  or ~  based on (19) or (20) is called the free spectral range of the etalon.  

6) Measurement of wavelength separation 

By imaging the interference pattern of a F-P etalon to the focal plane of a lens with focal length 
f, as seen in Fig. 4, The relationship between incident angle  and diameter D of an interference 
ring at the central portion of the pattern can be written as: 
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Substitute (21) into (16), we get: 
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It is apparent from (22) that the square of the diameter of a fringe in central portion has a linear 
relationship with the order of the interference m. The fringes at a fixed wavelength get denser 
with an increase in fringe diameter. Further, a larger diameter fringe corresponds to a lower 
order of the interference. Similarly, for the same order of the interference, a larger diameter 
fringe corresponds to a smaller wavelength.   

 

Figure 4 Relationship between incident angle and fringe diameter 

The difference between the squares of diameters of adjacent orders of the interference m and 
m-1at the same wavelength can be derived from (22), as: 
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Obviously, ΔD2 is a constant, independent of the order of the interference.  

Similarly, the wavelength difference of fringes at the same order of the interference m can be 
calculated from (22). For example, the wavelength difference between two adjacent spectral 



lines from Zeeman splitting can be written as: 
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Because the order of the interference m is normally near the central portion, m2d/. (24) can 
be rewritten as: 
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Or in wave number: 
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Substituting (26) into (13), we get the charge-mass ratio of an electron: 
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