

LEOI-34 Experimental System for Crystal Electro-Optic Effect

- Including He-Ne laser with power supply
- Precise optical alignment
- Observe and measure electro
 -optic modulation waveform
- High sensitivity photoreceiver for stable waveform output
- Detailed instruction manual

Note: oscilloscope not included

Electro-optic effect is a change in the refractive index of a crystal as induced by an electric field. By using a laser amplitude modulator employing the transverse electro-optic effect of a typical LiNbO₃ crystal, students can conduct the following experiments:

- 1. understand electro-optic effect and its applications.
- 2. be able to measure the half-wave voltage and electro-optic coefficient of crystals.
- 3. observe a change in optical properties of crystals due to electro-optic effect.
- 4. observe the interference of focused polarized light as caused by electro-optic effect.
- 5. conduct experimental demonstration of laser communication.

Schematic of transverse electro-optic effect

A lambda scientific

Experimental Contents

- 1. Display electro-optic modulation waveform
- 2. Observe electro-optic modulation phenomenon
- 3. Measure half-wave voltage of electro-optic crystal
- 4. Calculate electro-optic coefficient
- 5. Demonstrate optical communication using electro-optic modulation technique

Parts & Specifications

Power Supply for Electro-Optic Modulation	
Output Sine-Wave Modulation Amplitude	0 ~ 300 V (Continuously Adjustable)
DC Offset Voltage Output	0 ~ 600 V (Continuously Adjustable)
Output Frequency	1 kHz
Electro-Optic Crystal (LiNbO ₃)	
Dimension	5×1.7×50 mm
Electrodes	Silver Coating
Flatness	< λ/8 @633 nm
Transparent Wavelength Range	420 ~ 5200 nm
He-Ne Laser	>1.0 mW @ 632.8 nm
Rotary Polarizer	Minimum Reading Scale: 1°
Photoreceiver	PIN Photocell

Schematic of system

Lambda Scientific Systems, Inc. 16300 SW 137th Ave, Unit 132 Miami, FL 33177, USA Phone: 305.252.3838 Fax: 305.517.3739 E-mail: sales@lambdasys.com Web: www.lambdasys.com

Note: above product information is subject to change without notice.