

LEMI-53 Apparatus of Sound Speed Measurement and Ultrasonic Ranging

- High performance ultrasonic sensor
- Simple structure, stable and reliable
- Multiple experiments

The propagation speed of sound waves is an important physical quantity. The measurement of sound speed is widely applicable in ultrasonic ranging, positioning, measurement of liquid flow rate, material's elastic modulus and changes of gas temperature. Ultrasonic emission and reception is also one of the important means of anti-theft, monitoring and medical diagnosis.

This experimental apparatus of sound speed measurement and ultrasonic ranging is specially designed for educational training in teaching labs. It can measure the speed and the wavelength of a sound wave propagating in the air, and perform an experiment on ultrasonic ranging, so that students can better understand the basic principles and experimental methods of wave physics.

LEMI-53 apparatus has the following features:

- 1. A compact high efficient ultrasonic sensor is used. It has a metal housing shield of strong anti-interference ability with strong reflection and reception signal;
- 2. The apparatus is simple in structure, easy in operation and reliable in data reading.

A lambda

Experiments

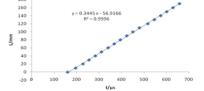
- 1. Measure the speed of sound wave propagating in the air by the method of resonant interference.
- 2. Measure the speed of sound wave propagating in the air by the method of phase comparison.
- 3. Measure the speed of sound wave propagating in the air by the method of time difference.
- 4. Measure the distance of a barrier board by the method of reflection.

Parts & Specification

Description	Specifications
Sine wave signal generator	Frequency range: 30 ~ 50 kHz; resolution: 1 Hz
Ultrasonic transducer	Piezo-ceramic chip; oscillation frequency: 40.1 ± 0.4 kHz
Vernier caliper	Range: 0 ~ 200 mm; accuracy: 0.02 mm
Experimental platform	Base board size 380 mm (L) × 160 mm (W)
Measurement accuracy	Sound velocity in air, error < 2%

1. Measure sound speed using resonant interference method

Table 1 Data of resonant interference method ($T = 26.1$ °C, $f = 40.070$ KHz)								
No. (i)	Li (mm)	No. (i)	Li (mm)	ΔLi (mm)	$\Delta Li(mm)$			
1	3.60	11	47.41	43.81				
2	8.03	12	51.78	43.75				
3	12.32	13	56.02	43.70				
4	16.83	14	60.03	43.20				
5	21.09	15	64.35	43.26	42.21			
6	25.63	16	68.74	43.11	43.31			
7	29.95	17	73.08	43.13				
8	34.42	18	77.47	43.05				
9	38.72	19	81.77	43.05				
10	43.11	20	86.17	43.06				


Average $\overline{\lambda} = 43.31 \times \frac{1}{5} = 8.662 mm$

Sound speed: $V = 40.070 \times 8.662 = 347.1 m/s$.

At temperature T = 26.1 °C, sound speed in dry air is V_0 =347.3 m/s. The experimental result has an error 0.06%.

3. Measure sound speed using time difference method

	Table 3 Results of time difference method $(T = 23.8 \text{ °C})$									
L (mm)	0	10.08	20.20	30.10	40.29	50.19	60.52	70.23	80.21	
t (us)	160	196	229	256	284	311	341	368	395	
L (mm)	90.29	100.07	110.19	120.27	130.42	140.3	150.15	160.29	170.32	
t (us)	424	451	480	518	547	575	602	630	659	
	180 7									

Figure 3 Plot of relationship between distance (L) and time difference (t) By straight line fitting, we got slope, it is sound speed $V = 0.345mm / \mu s = 345m / s$. At temperature T = 23.8 °C, sound speed in dry air is $V_0=345.9 m/s$. The experimental result has an error 0.26%.

2. Measure sound speed using phase method

No. (i)	Li (mm)	No. (i)	Li (mm)	ALi (mm)	ALi(mm)
1	29.95	11	73.28	43.33	
2	34.30	12	77.63	43.33	
3	38.64	13	81.91	43.27	
4	42.97	14	86.25	43.28	
5	47.32	15	90.65	43.33	43 29
	51.66	16	94.92	43.26	43.29
7	55.96	17	99.23	43.27	
8	60.28	18	103.57	43.29	
9	64.61	19	107.90	43.29	
10	68.98	20	112.22	43.24	

Average $\overline{\lambda} = 43.29 \times \frac{1}{5} = 8.658 mm$

Sound speed V = $40.070 \times 8.658 = 346.9 m / s$.

At temperature T =26.0 °C, sound speed in dry air is V_0 =347.2 m/s. The experimental result has an error 0.09%.

4. Measure barrier board distance by reflection method

Since the transmitting and receiving ends of the ultrasonic probe are separated by a certain distance, as shown in Figure 4, the measured distance $L=x/cos(\theta)$ is larger than the actual distance x. The error reduces with x increasing. For ultrasonic ranging of close distance, the measurement results must be corrected.

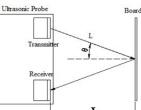


Figure 4 Schematic of the actual distance of ultrasonic ranging

Table 4 Comparison of measured and actual distances									
L (mm)	0	10.23	20.07	30.37	40.03	50.16	60.18	70.26	80.27
x (mm)	-1	9	19	30	39	49	60	69	79
L (mm)	90.18	100.05	110.3	120.07	130.42	140.62	150.49	160.1	170.29
x (mm)	89	100	109	119	129	140	150	160	170

Lambda Scientific Systems, Inc. 16300 SW 137th Ave, Unit 132 Miami, FL 33177, USA Phone: 305.252.3838 Fax: 305.517.3739 E-mail: sales@lambdasys.com Web: www.lambdasys.com

Note: above product information is subject to change without notice.