


Construct, Conduct & Comprehend Physics Experiments

LEOI-54 Experiments of He-Ne Laser and Laser Resonator

- Open structure promotes handson skills
- Semi-internal cavity and stable mechanical parts
- Large range of adjustment of output mirror
- Precise Measurement

Laser longitudinal & transverse modes

Laser gain curve & longitudinal modes

The He-Ne laser serial experimental system (LEOI-54) is designed with an adjustable He-Ne laser cavity. By changing the cavity length or the radius of curvature of the cavity output mirror, corresponding change in lasing mode can be observed. The use of a confocal spherical scanning interferometer (optional) further allows students to directly observe the frequency distribution pattern of both longitudinal and transverse modes of a He-Ne laser. The scanning interferometer is also used to measure the frequency spacing between laser modes. Other optical parameters such as the spot size and the beam divergence angle of a He-Ne laser, and the free spectral range and the finesse of a scanning Fabry-Perot interferometer can be also measured with this system.

Experimental Contents

- 1. Set up and align optical path to meet resonance conditions to generate laser.
- 2. Observe and measure change of laser modes and power output by adjusting cavity length.
- 3. Measure waist size and divergence angle of laser beam.
- 4. Understand working principle and theory of laser resonator.
- 5. Measure laser gain by inserting loss adjustable device in laser cavity.

Parts and Specifications

Optical bench	Length: 1 m	1
Alignment laser	4 mW laser diode at 650 nm with 2-D adjustable holder	1
He-Ne laser tube	250 mm semi-internal cavity with 4-D adjustable holder	1
Laser driver	Current adjustable	1
Dielectric mirror	Incl precise 2-D adjustable holder	1
Laser power meter	3-1/2 digits Scale: 200 μW, 2 mW, 20 mW, 200 mW Resolution: 0.1 μW	1
Gain measurement device	with 2-D adjustable holder	1
Expander lens	40 X, with 2-D adjustable holder	1
Pin-hole	Φ1 mm, with 2-D adjustable holder	1
White screen	100 mm × 80 mm	1
Slider		1
F-P scanning interferometer	Free spectral range: 4 GHz; finesse: >100	Optional
Power cord		2
Instruction manual		1

Note: above product information is subject to change without notice.

Lambda Scientific Systems, Inc. 16300 SW 137th Ave, Unit 132

Miami, FL 33177, USA

Phone: 305.252.3838 Fax: 305.517.3739

E-mail: sales@lambdasys.com Web: www.lambdasys.com