

Construct, Conduct & Comprehend Physics Experiments

LEMI-32 Measuring Liquid Viscosity-Falling Ball Method

- Photoelectric timing
- High accuracy
- Stable and reliable
- Affordable

Schematic of experimental method

Viscosity coefficient is one of the important properties of liquid. Measurement of liquid viscosity coefficient using a falling ball can reveal related physical phenomena clearly. Normally, the measurement accuracy of the falling ball method is not high by using a manual stopwatch considering the existing parallax errors of the ball.

This apparatus is designed with the following benefits:

- 1. Using photoelectric sensor and electronic timer to avoid the parallax and timing errors caused by a stopwatch.
- 2. Improved mechanical design to ensure precise falling trace of the ball.
- 3. Using laser ranging to accurately measure both the fall time and fall distance to avoid the parallax error.

Experimental Objectives

- 1. Measure time and speed of a moving object using a laser photoelectric sensor
- 2. Measure oil viscosity using falling ball method and Stokes formula
- 3. Understand the falling ball method and make proper corrections if necessary

Specifications

Electronic timer	Displacement range: 400 mm; resolution: 1 mm	
	Timing range: 250 s; resolution: 0.1 s	
Measuring cylinder	Volume: 1000 mL; height: 400 mm	
Measurement error	<3%	

Parts

Name	Qty	Note
Electronic unit	1	
Stand rack	1	
Laser emitter	2	
Laser receiver	2	
Cable	1	
Cylinder	1	
Small steel ball	1 set	diameter: 1.5, 2.0 & 2.5 mm, one bag each
Magnetic steel	1	
Power cord	1	

Schematic of system

Lambda Scientific Systems, Inc. 16300 SW 137th Ave, Unit 132

Miami, FL 33177, USA

Phone: 305.252.3838 Fax: 305.517.3739

E-mail: sales@lambdasys.com Web: www.lambdasys.com

Note: above product information is subject to change without notice.